A pr 2 00 9 Consecutive cancellations in Betti numbers of local rings ∗

نویسندگان

  • Maria Evelina Rossi
  • Leila Sharifan
چکیده

Let I be a homogeneous ideal in a polynomial ring P over a field. By Macaulay’s Theorem, there exists a lexicographic ideal L = Lex(I) with the same Hilbert function as I. Peeva has proved that the Betti numbers of P/I can be obtained from the graded Betti numbers of P/L by a suitable sequence of consecutive cancellations. We extend this result to any ideal I in a regular local ring (R,n) by passing through the associated graded ring. To this purpose it will be necessary to enlarge the list of the allowed cancellations. Taking advantage of Eliahou-Kervaire’s construction, several applications are presented. This connection between the graded perspective and the local one is a new viewpoint and we hope it will be useful for studying the numerical invariants of classes of local rings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A class of Artinian local rings of homogeneous type

‎Let $I$ be an ideal in a regular local ring $(R,n)$‎, ‎we will find‎ ‎bounds on the first and the last Betti numbers of‎ ‎$(A,m)=(R/I,n/I)$‎. ‎if $A$ is an Artinian ring of the embedding‎ ‎codimension $h$‎, ‎$I$ has the initial degree $t$ and $mu(m^t)=1$‎, ‎we call $A$ a {it $t-$extended stretched local ring}‎. ‎This class of‎ ‎local rings is a natural generalization of the class of stretched ...

متن کامل

Boundedness versus Periodicity over Commutative Local Rings

Over commutative graded local artinian rings, examples are constructed of periodic modules of arbitrary minimal period and modules with bounded Betti numbers, which are not eventually periodic. They provide counterexamples to a conjecture of D. Eisenbud, that every module with bounded Betti numbers over a commutative local ring is eventually periodic of period 2 . It is proved however, that the...

متن کامل

A pr 2 00 7 THE MINIMAL RESOLUTIONS OF DOUBLE POINTS IN P 1 × P 1 WITH ACM SUPPORT

Let Z be a finite set of double points in P 1 × P 1 and suppose further that X, the support of Z, is arithmetically Cohen-Macaulay (ACM). We present an algorithm, which depends only upon a combinatorial description of X, for the bigraded Betti numbers of I Z , the defining ideal of Z. We then relate the total Betti numbers of I Z to the shifts in the graded resolution, thus answering a special ...

متن کامل

Exponential Growth of Betti Numbers

We prove over some local commutative noetherian rings that the sequence of Betti numbers of every finitely generated module is either eventually constant or has termwise exponential growth.

متن کامل

Lascoux-style Resolutions and the Betti Numbers of Matching and Chessboard Complexes

This paper generalizes work of Lascoux and Jo zeeak-Pragacz-Weyman computing the characteristic zero Betti numbers in minimal free resolutions of ideals generated by 2 2 minors of generic matrices and generic symmetric matrices, respectively. In the case of 2 2 minors, the quotients of certain polynomial rings by these ideals are the classical Segre and quadratic Veronese subalgebras, and we co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009